
BLAZEGUIDE

Rick Pratt

BLAZEGUIDE ii

COLLABORATORS

TITLE :

BLAZEGUIDE

ACTION NAME DATE SIGNATURE

WRITTEN BY Rick Pratt August 10, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

BLAZEGUIDE iii

Contents

1 BLAZEGUIDE 1

1.1 BlazeWCP . 1

1.2 It’s a floor wax, it’s a dessert topping.... 2

1.3 I’m a glutton for punishment... 2

1.4 300THz cpu with 512 GB mem... 3

1.5 If it blows up, it’s your fault . 3

1.6 You’ll need a hammer . 3

1.7 Errors . 3

1.8 This program brought to you by MicroSof...... 4

1.9 Version history . 4

1.10 Future . 6

1.11 If I mention your name, pay up :) . 6

1.12 You will be assimilated..... 6

1.13 Contacting Me . 7

1.14 I feel so dirty.... 7

1.15 Faster than a speeding snail.... 8

BLAZEGUIDE 1 / 9

Chapter 1

BLAZEGUIDE

1.1 BlazeWCP

BlazeWCP - Very fast C2P patch for the OS chunky pixel functions

Click
here
to see what I’ve found that does and doesn’t

use these functions since this seems to be a point of confusion for some
people.

What is it

Why another patch
NEW--->
Speed Tests
<---NEW

Requirements

Disclaimer

Installation

Error Codes

Bugs

Version History

Future stuff

People I’d like to thank

Other Stuff By Me
Please read WPATest guide before using WPAtest.

Flames, bugs, congratulations...
find me here.

BLAZEGUIDE 2 / 9

Find the latest version of BlazeWCP at http://kingamiga.webjump. ←↩
com

1.2 It’s a floor wax, it’s a dessert topping....

BlazeWCP is a highspeed C2P patch for the OS chunky ←↩
functions

WritePixelLine8(), WritePixelArray8() and on OS 3.1+ WriteChunkyPixels().
BlazeWCP writes directly into the destination bitmap and uses 32bit C2P ←↩

conversion
code for maximum speed. All of this makes it fast on 020+ cpus and REALLY ←↩

fast on
machines with 32bit chipram. Using the included wpatest , a benchmark
of these functions writen by Stephen Brookes (programs FBlit), I did some
speed/compared test. The results are

here
in this section.

1.3 I’m a glutton for punishment...

I made BlazeWCP after I got sick of how slow the other patches of this type were ←↩
. PatchWPA8

was very slow on my 030 since it calls BltBitMapRastPort() after everyline it ←↩
converts and

since it uses a single scratch bitmap and buffer for its functions it gets SLOW ←↩
!! when more

then 1 program tries to use it’s routines. NewWPA8 was faster but it only used ←↩
16 bit C2P

code which is slower then it has to be when you have a 32bit cpu and 32bit ←↩
chipram. NewWPA8

also has a bug that the author denies that causes line corruption with IBrowse ←↩
since it calls

WritePixelLine8() to render to the screen. The corruption is caused by the fact ←↩
that NewWPA8

builds the hook it passes to DoHookClipRects() using memory internal to the ←↩
patch itself.

This works fine if only 1 program uses it’s routines but when 2 or more use them ←↩
the hook

gets overwitten with the new callers data. This causes invalid pointers to be ←↩
passed to

DoHookClipRects() which causes the corruption me and others noticed. Since ←↩
Ibrowse spawns

a task for every picture being rendered/decoded these routines DO get called by ←↩
more then

one task and that’s why some lines get corrupted.

/BEGIN RANT

BLAZEGUIDE 3 / 9

I emailed Michael van Elst, the author of NewWPA8, about this corrupt lines ←↩
problem about

2 years ago, before I knew what caused it. He sent me an email back claiming ←↩
that

there was nothing wrong with NewWPA8 because it "worked for him". Mr. Elst (or ←↩
van Elst),

any good programmer will tell you that just because something "works for you" ←↩
doesn’t mean

it works for everybody. Your complete lack of interest in a bug in your patch ←↩
shows me

that you truely didn’t care, or even bother to check. I guess I’m lucky you even ←↩
bothered

to email me back at all.

/END RANT

1.4 300THz cpu with 512 GB mem...

A 020+
Some fast ram
Hopfully OS 2.0+, otherwise 3.0+. I need feedback on this one.

Recomended:

A 030 50Mhz
32bit chip ram
AGA chipset
FBlit

1.5 If it blows up, it’s your fault

I take no responsibility for any death or destruction caused by this
patch. Use it at your own risk.....you’ve been warned.

1.6 You’ll need a hammer

Just copy BlazeWCP to your C directory and add C:BlazeWCP to your
startup-sequence AFTER SetPatch BUT BEFORE any gfxcard support
software like P96 or cybergfx. I doubt you’ll be using this patch
if you have a gfxcard tho....lucky you :)

1.7 Errors

BLAZEGUIDE 4 / 9

The patch will return error code 10 if it can’t allocate memory
for the patch, 20 if you don’t have a 020 or better and 30 if it
can’t open graphics.library v36+.

1.8 This program brought to you by MicroSof......

None known, email me if you find some.

1.9 Version history

0.x - Internal testing versions, buggy and not optimized, not released.

1.0 - Was supposed to be the initial release.

1.1 - Sped up 8bit and 4bit conversion routines a little.

- Sped up the main loop a bit.

- Added support for rastports with masked planes.

- Initial Release.

1.2 - Streamlined the c2p code a little, constance are only loaded into
registers once instead of by both routines of a conversion >4 planes.
Makes the code smaller and possibly a little quicker.

- Now calculates # pixels plotted by adding up the pixels plotted for
every rect the hook is called for. Should make the #s returned by
WPL8 and WPA8 100% accurate....WCP now actually returns # pixels
plotted too even tho it doesn’t have to.

- 2nd Release.

1.3 - Reorderd register usage a little. This saves 12 bytes per routine ←↩
and freed

up a register which is now used to defer a chipram write for the 4/8 bit
conversion routines instead of defering it to the stack.

- The above optimization made me think a little (not too much, i’d hurt ←↩
myself ;)

and allowed me to see a way to keep the other chipram write that was ←↩
defered to

the stack in the 4/8 bit routines in a register. Now all the convertion ←↩
routines

run completely within the registers and are just complex mem copy loops, as ←↩
they

BLAZEGUIDE 5 / 9

should be.

- 3rd Release

1.4 - Removed some unneeded code that didn’t hurt anything, but wasn’t ←↩
helpful either.

- Ooops, due to the way masks and alignment code is generated BlazeWCP would ←↩
do a

conversion twice if it was smaller then 31 pixels wide and didn’t end ←↩
exactly

at a 32 bit boundry. This didn’t cause any problems but slowed these small
conversions down when they didn’t have to be.

- Removed a very bad bug in the code that generates displacement into the ←↩
chunky

buffer. The code used the width of the operation instead of the ←↩
BytesPerRow that

gets passed to WriteChunkyPixels() to move thru the chunky buffer. The ←↩
only

program I know of that even shows a problem because of this is ImageDesk v3 ←↩
.04.

Thank you very much to Stephen Brookes for finding this bug for me and to
Andras Gabor for reporting it. How this patch worked correctly all this ←↩

time
is really beyond me :)

- 4th Release

1.5 - Fixed the masked rastport code since I broke it in the last release. ←↩
Just made

things look funny is all. Not that big a deal since the only thing I know ←↩
of

that calls these functions with masked rastports is wpatest.

- Added a very small speedup for 020/030 cpus that only affects ←↩
WritePixelArray8()

and WriteChunkyPixels().

- Patches now install with Forbid()...CacheClearU()....Permit(). You never ←↩
know

what might try and use functions while they’re being patched....

- 5th release

1.6 - Combined the loops that build the temp. stack bitmap and inital ←↩
destination

bitmap pointers. This saves a little space.

- Filled in that saved space making the patch about 40% bigger by adding
c2p code written specifically for the first/last longword masking. This is
faster on my 030 by only ~6% so it may not stay.

- 6th release

BLAZEGUIDE 6 / 9

1.65 - Fixed the corruption caused when the new alignment routines were ←↩
called to

render into a small (16 pixel or smaller) interleaved bitmap. It was ←↩
caused

by a little memory access goof-up on my part. Thanks to everyone that ←↩
reported

this bug.

- 7th release

1.7 - Inlined code that takes the place of the DoHookClipRects() call.
This removes the need for OS 3.0 and so this patch should work
from OS 2.0 and up.

- Made some other changes that eek out a tiny bit more speed.

- 8th release

1.10 Future

- More speed.............that’s a though one....

- Sugestions welcome.

1.11 If I mention your name, pay up :)

- Iain Barclay: for 8n1.device, getting me into asm programming and putting
up with stupid questions ;)

- Stephen Brookes: for FBlit and for the help you’ve given me. Also for ←↩
responding

to my emails even when you’re swamped and I’m sure couldn’t care less about ←↩
them

at the time.

- Michael Kalms: for the lightning fast chunky 2 planar routines that this ←↩
patch uses.

- Michael van Elst: for adamantly denying the existance of a blantanly ←↩
obvious bug

in NewWPA8, which aside from that is a really good patch.

I’d also like to thank everyone for the feedback I’ve gotten :)

1.12 You will be assimilated.....

BLAZEGUIDE 7 / 9

Other stuff by me on Aminet

FText V1.7 - Speeds up text by rendering to fastram instead of chip. Needs ←↩
FBlit V3+.

Get the latest FBlit from http://www.tpec.u-net.com

QBC V1.1 - A cpu only BlitClear() patch.

1.13 Contacting Me

Send praise, suggestions, bug reports, flames to:

rickprat@usit.net

or find me on DalNet channel #AmIRC nick: Kingamiga

Check out my poor excuse for a website at http://kingamiga.webjump.com

1.14 I feel so dirty....

I added this little section because it seems that some people are confused
as to what BlazeWCP should affect. I know this will miss most of the people
it’s aimed at since they don’t read docs but I’m getting tired of responding
to emails like "BlazeWCP doesn’t help my SysSpeed scores" or "My workbench
text scrolls slower now". Sorry folks, BlazeWCP has no effect on either of
these things but I will add a list of things that DO use BlazeWCPs functions
and things that DON’T use them. I can only list things that I have, feel
free to email me about any programs you have that use BlazeWCPs funtions.

The programs that use the patched functions only use them to render images
so the functions will not:

- Make text scroll/display quicker (I’ve another patch for that ;)
- Make windows move/diplay quicker.
- Make window contents scroll quicker.
- Speed up icon rendering.
- Speed up/ slow down benchmark scores that don’t test these functions.
- Speed up your games unless the game gives you the option to use these ←↩

functions
or uses them already.

- Give your Amiga more gfx power then your PC.
- ...etc....etc...you get the idea....I hope..

To put another way, BlazeWCP is faster then other patches of this type but it
can only speed up things that use the patched functions. It won’t make your
cpu faster or your HD give 100mb/s transfers....sorry.

Things I have that DO use BlazeWCPs functions:

BLAZEGUIDE 8 / 9

IBrowse V1.0 - V1.12 (V1.2 and newer use there own c2p code)
jfif.datatype using tower jpeg.codec
wpatest
P96Speed
DoomAttack with -rtg tooltype set
ImageDesk V3.04
Eagleplayer

Most Mpeg/Quicktime/AVI players let you set them to use WritePixelArray8()
using a tooltype.

Things I have that DON’T! use BlazeWCP

Voyager
SysSpeed (sorry people, but BlazeWCP doesn’t get used by SysSpeed)
WorkBench

I’ve other things that don’t use these functions (most everything not listed
as using them) but I didn’t see the point in listing those.

User reports are welcomed.

1.15 Faster than a speeding snail....

I’ve added this section to move all the speed stats, etc. to.
The guide was getting a bit messy the way it was before.

I ran a test using aMiPEG V1.0 from aminet and get the following results.
I used a 208x176 mpeg using only the DITHER gray option on a 256 color
320x256 lo-res PAL screen. My specs are:

A1200 OS 3.0 030/882 40MHz 8megs Fast 2megs chip

WPA8 Function fps avg.
used:

OS 3.0 3.439371 fps
PatchWPA8 5.906459 fps
NewWPA8 5.912143 fps
BlazeWCP 10.791788 fps <- not bad for a 030 40MHz ;)

Using an 8bit (256 color) 640 x 512 hires laced PAL screen and WPATest to ←↩
benchmark I

get the following resutls: (#’s are thousands of pixels/s so 100k is 100,000 ←↩
pixels/s)

Please read the wpatest guide before using it. It’s a little buggy.
The pause after hitting the Speed button is normal.

not 32bit aligned 32bit aligned

BLAZEGUIDE 9 / 9

OS 3.0 111k pixels/s 272k pixels/s
PatchWPA8 152k pixels/s 593k pixels/s <- FBlit’s why it’s this fast on ←↩

this test
NewWPA8 200k pixels/s 569k pixels/s
BlazeWCP 482k pixels/s 2072k pixels/s

Speeds Reported by users, (non-aligned) - (aligned) in thousand pixels/s
Test Screen - PAL 8bit (256 color) hires laced 640 x 512:

WPL8 WPA8 WCP

030 40MHz 286 - 1462 482 - 2072 482 - 2072
030 50MHz xxx - xxxx 547 - 2478 xxx - xxxx
040 28MHz 453 - 2027 636 - 2490 634 - 2490
060 50MHz xxx - xxxx 876 - 4124 xxx - xxxx
060 50MHz 852 - 4067 1076 - 4624 1072 - 4620

I also had a report from a man with an ECS equiped A2000 that BlazeWCP ←↩
works very well.

His results were:

030 40MHz 92 - 430 157 - 667 156 - 663

Of course he was only able to run the test at 16 colors on a 640 x 512 PAL ←↩
screen

but he reported a speedup of 4x for the non-aligned test and 10x for the ←↩
aligned test

compared to the OS routines.

	BLAZEGUIDE
	BlazeWCP
	 It's a floor wax, it's a dessert topping....
	 I'm a glutton for punishment...
	300THz cpu with 512 GB mem...
	If it blows up, it's your fault
	You'll need a hammer
	Errors
	This program brought to you by MicroSof......
	Version history
	Future
	If I mention your name, pay up :)
	You will be assimilated.....
	Contacting Me
	I feel so dirty....
	Faster than a speeding snail....

